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We analyze the linear stability of a planar solidification front with sharp-interface and phase-field
models in two physical situations: (1) an isothermal system at the melting point in the unperturbed
state, and (2) constant-speed growth of a crystal into its hypercooled melt. The parameters in
the phase-field models are chosen to scale with the nondimensional interface thickness so that in
the limit of vanishing interface thickness, the sharp-interface model is recovered. Comparison of
the results from the two models shows the following trends as the interface between the melt and
solid is made thicker. (1) Perturbations to the plane front are stabilized as if the surface energy of
the interface was increased. (2) The planar front and its perturbations behave as if the interfacial
attachment kinetics was made faster, as long as the interface is significantly smaller than the capillary
length. If the interface thickness is on the order of the capillary length, then the attachment kinetics
may appear either slower or faster than for sharp-interface models. Stability results under “heat
trapping” conditions are computed, and only planar fronts whose speed increases with undercooling
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are found to be stable.

PACS number(s): 64.70.Dv, 64.90.+b, 81.10.Fq, 81.30.Fb

I. INTRODUCTION

The growth of a single-component crystal into its su-
percooled melt is often an unstable process that leads
to complex morphologies of the crystal-melt interface.
Using sharp-interface (or Stefan-type) models of solid-
ification involves treating the crystal-melt interface as
a zero-thickness free boundary which must be found as
part of the solution. This free boundary may become
quite complex geometrically, and numerical calculations
that are based on explicit front-tracking of the interface
position can be complicated. An alternative is to use
a phase-field model for solidification (see, for example,
Ref. [1]). Phase-field models approximate the crystal-
melt interface as a smooth transition of finite width in
the phase-field variable ¢(x,t); the transition is from one
value of ¢ representing the melt phase to another repre-
senting the solid phase. The constant values assumed by
the phase field far from the interface each correspond to
local minima in ¢ of the bulk free energy. In this type
of model a nonlinear reaction-diffusion equation for the
phase field is combined with the corresponding equations
for the other field variables, and the resulting coupled
equations are solved over the entire domain consisting of
both solid and liquid phases. The regions of transition
from one bulk value of ¢ to the other are identified as
the crystal-melt interface, and no free boundaries must
be found explicitly. The fact that phase-field models may
recover sharp- (zero-thickness) interface models of solid-
ification in the limit of vanishing interface thickness has
been demonstrated by Caginalp [2].

Many investigations have been carried out to com-
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pare the two modeling approaches. The critical nucle-
ation radius for solidification and propagation of a planar
front into an undercooled melt have been investigated
by Caginalp and Socolovsky [3]; they find that in one-
dimensional models, the interface may be a fairly large
fraction of the domain size (say 20%) and still retain up to
three-digit agreement with sharp-interface model results.
The critical nucleation radius has also been examined by
Brattkus et al. [4] with the model used by Kobayashi [5]
from the perspective of a nonlinear boundary value prob-
lem. They found it necessary for the interface thickness
to be smaller than the critical nucleation radius in order
to get good agreement with sharp-interface predictions.
The growth of a sphere modeled with each approach was
also considered by Wheeler et al. [6]; their good agree-
ment for the sphere served as justification for proceeding
to computation of dendrites. A linear stability analysis
of a planar front growing into a hypercooled melt has
recently been carried out by Kupferman et al. [7]. In
all of these cases, it is found that reasonable agreement
between the two methods can be obtained provided the
interface thickness is taken small enough.

Recent computations using phase-field models to com-
pute dendritic morphologies also show the promise of
this approach. Kobayashi [5] used a phase-field model
to compute cellular and dendritic crystal-melt interface
shapes in two dimensions, and dendritic shapes in three
dimensions. Wheeler et al. [6] used a different phase-field
model derived from irreversible thermodynamics [8,9] to
model two-dimensional dendritic growth. They made
careful comparisons with sharp-interface theories for the
Ivantsov solution, with marginal stability theory, and
with microscopic solvability theory; the degree of agree-
ment depends on the chosen parameter values. For exam-
ple, the phase-field results appear to approach marginal
stability theory for smaller undercoolings; the agreement
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with microscopic solvability theory is better for smaller
values of anisotropy. The comparison is clearly carried
out in the context of a difficult problem, in which even
the sharp-interface results currently constitute an area of
active research.

In order to make meaningful comparisons between
phase-field and sharp-interface models, it is necessary to
note explicitly which parameters are being held fixed and
which are allowed to vary while making the comparison.
Among the parameters that appear in the phase-field
model are several that have no immediate counterpart
in a sharp-interface model. In particular, an isotropic
phase-field model generally involves a gradient energy co-
efficient, (¢')2, a double-well barrier height, 1/a’, and a
mobility parameter, M’, related to the temporal relax-
ation of the phase field. By appealing to particular ex-
act solutions to the phase-field equations that represent
one-dimensional stationary or constant-velocity traveling
wave solutions, it is possible to relate certain combina-
tions of these phase-field parameters to more traditional
parameters such as the surface energy, v [10], and the
linear kinetic coefficient, p [11], that are often used in
sharp-interface treatments, together with a measure of
the thickness, 8, of the diffuse interface. In this frame-
work [12], the dependence of the exact solutions on inter-
face thickness is such that the defining relations between
the phase-field and sharp-interface parameters are valid
for any value of the diffuse-interface thickness. With this
choice, it is also possible to show formally that in more
general situations (e.g., nonplanar geometries with un-
steady dynamics), a sharp-interface model may be re-
covered from the phase-field model in the limit that the
interface thickness § is much smaller than the geomet-
rical length scales in the problem, for fixed values of v
and p [2]. However, in these more general circumstances,
the predictions of the phase-field model and the sharp-
interface model will generally disagree to some extent
for values of § that fall outside the range of asymptotic
agreement of the models, despite the fact that the phase-
field parameters are being constrained in an attempt to
maintain common values of v and p. It is suggestive
to compare the trends observed in the phase-field model
as the interface thickness is varied with trends that are
observed in the sharp-interface model when v or u are
varied.

In this paper, we examine two cases in which the sharp-
interface theory can be worked out in explicit detail, in
order to obtain quantitative comparisons between sharp
interface theory and phase-field theory. In the first sit-
uation, a planar front separates a crystal from its melt
at the melting temperature, Ths. The front is then per-
turbed with a small-amplitude sinusoidal shape (follow-
ing Mullins and Sekerka [13]), and the linear stability of
the front examined in the context of both sharp-interface
and phase-field models of solidification. In the second
situation, the melt is hypercooled; that is, the bulk tem-
perature of the melt is cooled more than L/c below the
melting point, where L is the latent heat released upon
solidification per unit volume and c is the specific heat
of the melt at constant pressure. Under these condi-
tions, the planar crystal-melt interface may then prop-
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agate with constant speed. The linear stability of the
interface is also examined in the context of sharp and
diffuse interface models. In making the comparisons, ap-
propriate combinations of the parameters that appear in
the phase-field models are held fixed, resulting in given
values of the usual variables appearing in sharp-interface
treatments. The diffuse-interface width can then be var-
ied systematically for fixed values of the sharp-interface
parameters.

Important issues that arise in phase-field modeling are
how small the interface thickness must be relative to the
geometric length scales that occur in the problem, and
also how well the time-dependent dynamical aspects of
the problem are described. Both concerns are well illus-
trated by dendritic growth phenomena, where the gener-
ation of secondary and tertiary side arms produce a wide
range of length scales, and the dynamical features include
periodic emission of side arms near the dendrite tip, and
coarsening of the geometrical length scales farther down
the primary stem on longer time scales.

In the present study, using linear stability theory, we
consider the dispersion relations for the sharp-interface
model and phase-field models, which provide a di-
rect quantitative dynamical comparison of the temporal
growth rates for perturbations to the system. The issue
of the resolution of geometrical length scales by a diffuse
interface arises in the large-wave-number limit of the dis-
persion relations for the phase-field models, when the
wavelength of the perturbations becomes comparable to
the interface thickness. One can also consider how thin
an interface must be to accurately compute growth rates
for long wavelength perturbations; for example, is it nec-
essary to resolve the capillary length, even if it is much
shorter than the perturbation wavelength? In addition,
for the case of growth into a hypercooled melt, the ther-
mal field exhibits a characteristic boundary-layer thick-
ness k/V, where « is the liquid thermal diffusivity and
V is the interface velocity. For a given diffuse-interface
thickness, at very high growth rates this length scale be-
comes comparable to the interface width, and the issue
of resolution can again be addressed.

A number of variations of phase-field formulations are
possible, differing in detail but apparently leading to
qualitatively similar results in general. We consider two
formulations here: one, which was developed by Langer
[1] and studied extensively by Caginalp [2], which is based
on a relatively simple free energy functional, and an-
other more recent model which is derived from a more
involved thermodynamic basis [9]. Both models have
similar sharp-interface limits, and have been used suc-
cessfully in numerical computations.

II. ISOTHERMAL CASE

In this section we consider a stationary system under
conditions that allow an isothermal base state, in which
the solid and liquid phases are separated by a planar
crystal-melt interface; the temperature of the system is
the bulk melting point Ts. Since we compute the lin-
ear stability of a one-dimensional system representing a
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planar crystal-melt interface, our approach differs from
previous work in which the spectrum was computed for
isothermal perturbations to an isothermal kink [14], and
for perturbations to a uniform phase field [15]. For ease
of presentation we discuss two-dimensional perturbations
to the system, with the understanding that, since the sys-
tem is isotropic, linear stability results carry over to the
three-dimensional case if the wave number is interpreted
as the modulus of the three-dimensional wave vector.

A. Sharp interface

We first recall the linear stability results for a sharp
crystal-melt interface in an isothermal system, including
the effects of capillarity and interface kinetics. The in-
terface is assumed to have the form 2’ = h'(z’,t’), where
2’ is the coordinate normal to the mean position of the
interface, z’ is the coordinate along the mean position of
the interface, and ¢’ is time; the unperturbed planar in-
terface is located at 2’ = 0. The solid occupies the region
z' < h' and the liquid is in 2’ > A’. We assume equal
thermophysical properties in the melt and solid.

We consider the simple unperturbed solution to the
problem with uniform temperature 77 = Tjs and the
stationary flat interface A’ = 0; we examine the linear
stability of this state. For the stability problem, it is con-
venient to nondimensionalize length with dy = ¢TI/ L,
which is a scaled capillary length, and time with d3/x;
here « is the thermal diffusivity, I' = v/L is the capillary
length and v is the surface free energy of the interface.
Temperature relative to the melting point is measured in
units of L/c.

After nondimensionalization, the linearized perturba-
tion equations in the bulk are

oy oTs . )
W—VTL,2>0and 5 =VTs, 2<0; (1)
at the interface we have
1 8h 9%h
TLat L= 5% (2)
0T, 9Ts _ _0h (3)
Oz 8z  at’
T, =1Ts, (4)
where
'"TyT
pu=EIM (5)
K

Here p' is the attachment kinetics parameter; we may
think of p as a ratio of characteristic kinetic and thermal
speeds. The perturbation temperatures are required to
decay to zero far from the interface.

For nickel, the dimensionless kinetic coefficient is
roughly © = 0.05 and the representative value of the
length scale is dyp = 7 x 10~8 cm. For many situations in
solidification, however, the effects of attachment kinetics
are found to be insignificant and are neglected by letting

#' tend to infinity, so larger values of the parameter u
are of interest as well.
The solutions in the bulk are given by

Ty, = Toexplot + ikx — Az],

(6)
Ts = Ty explot + ikx + Az],
and the interface is given by
h = H explot + tkz]. (7)

Here A = Vo + k2, and the branch of the complex square
root is assumed chosen so that the real part of A is pos-
itive. Substitution into the interfacial conditions results
in the dispersion relation

[ 2
— k*=0. 8
o+ 2 +u (8)
By using the relation o = A\? — k2, this equation may be
converted to a polynomial in A = A0, k):

FA) =A%+ ’2—LA2+k2(u—1)/\—§k2 =0 (9)

The condition that the real part of A should be posi-
tive usually rules out two of the three roots, leading to a
single value for o. It is easy to solve this equation numer-
ically for the growth rate o = o(k); this is the discrete
spectrum, representing the mode which is responsible for
interface instability in more general situations. There
exist other solutions to the bulk equations with negative
growth rates of the form

o(k) = —k%* - p? (10)

for any positive value of p; the corresponding tempera-
ture fields have the form
T1, = To exp|ot + ikx + ipz] + Ty explot — tkz — ipz]
(11)
and

Ts = T, explot + tkx + ipz] + Ts explot — tkx — ipz],

(12)
and the interface shape is
h = Hg explot + ikz], (13)
where
—(To —+ Tl) UHO
Hy=—7—, To=T0+ —,
T (kK to/u) TP 2p
(14)
T3 = T1 - gﬂ.
2ip

These solutions make up the continuous spectrum, and
represent stable modes. They do not decay in the far
field; however, the analog to modes of this type may be
observed in numerical calculations performed in a trun-
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cated domain. Combinations of these modes, formed by
taking Ty and T3 to be suitable functions of p and inte-
grating over p, do exhibit decay in the far field.

The growth rate of the discrete mode given by Equa-
tion (8) is always negative except for o(0) = 0. Figure 1
displays results for several values of the attachment ki-
netics parameter p. Asymptotic expressions for o in the
limit £ > 1 can easily be obtained. We find that for
p<l,

o= —pk?® + 2—\/’1‘%__#1: +0(1). (15)
For p>1,
o=k + L om). (16)
4(p—1)?
For p=1,
o=—-k?+ 5;1/—3#/3 + O(k). (17)

Equation (16) implies that the growth rate becomes in-
dependent of the kinetics parameter u to leading order
for u > 1; this will be useful for interpreting the differ-
ences in behavior between sharp-interface and phase-field
models. For k < 1 we find that o ~ —2k3.

B. Phase-field model

Langer’s phase-field model [1,2] may be stated in
nondimensional form as
10¢ 5o, 1 2
Mat—eV¢+§¢(1 ¢°) + au, (18)
Ou 104 _,
E + 5-3—t = V?u, (19)

where

(k)
N
N

-26

FIG. 1. Sharp-interface linear-stability growth rates o as a
function of the wave number k are shown for several values
of the attachment kinetics parameter u. The results change
imperceptibly from the p = 10 case for larger u.

diM’ a'L?

M= = = s
an ' ° 2¢Tar’ do

(20)

subject to v = 0 and ¢ = +1 as 2 = *oo. We have
once again nondimensionalized lengths with do, time with
d?/k, and the temperature as u = (T’ —Tar)/(L/c). Here
(€')? is the gradient energy coefficient, M’ is a relaxation
parameter, and a’ is a parameter related to the barrier
height in the double-well potential. In the sharp-interface
limit, the parameters (¢')2, M’', and a’ may be related
to the diffuse-interface thickness, the interfacial surface
tension, and the interface kinetic coefficient [2]. In this
model the phase-field variable ¢ varies over the range
—1 < ¢ < 1, with ¢ = —1 representing the solid phase
and ¢ = 1 representing the liquid phase.

The dimensionless parameter € represents the ratio
of the diffuse interface thickness to the scaled capillary
length dy. While in order to recover the sharp-interface
problem it is natural to examine the limit € — 0, it should
also be noted that the capillary length itself is of atomic
scale, and this limit is more of a mathematical abstrac-
tion than a physically-based approximation. In this sense
the limit ¢ — 0 therefore differs in some respects from the
sharp interface limits used in other situations, in which
the diffuse-interface thickness is taken to be small com-
pared to macroscopic length scales in the problem, such
as a container size or the radius of curvature of a nonpla-
nar interface. The sharp-interface problem for a planar
geometry in an infinite domain admits no such geomet-
rical length scale.

Performing the asymptotic analysis in the fashion de-
scribed by Caginalp [2], we find that to recover the sharp-
interface model from the phase-field problem the appro-
priate scaling for the phase-field parameters is to take
a = ¢/3, and M = p/e2. We now choose these expres-
sions for M and a in Eq. (18) for all values of ¢, which
allows us to vary the interface thickness while holding
fixed the other physical parameters corresponding to the
sharp-interface model. We shall return to this point in
later sections.

A simple one-dimensional solution to the isothermal
problem exists; it is given by

%(z) = 0 and #(z) = tanh (i) . (21)

Here we have chosen the solution which vanishes at the
origin z = 0, where for small € there is a rapid transition
from solid to liquid.
We may perturb this base state as follows:
u= 0 + 4(z) exp[ikz + ot],
(22)
¢= 6(2) + ¢(2) explikz + ot];

the linearized equations for the perturbations are given

by
(D — k)b + Leii+ 11— 38)d— op=0, (23)
3 2 I ’

(D? - k)i —o(i+ 34) =0, (24)
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with the far-field boundary conditions

é, 1 — 0, z = Foo. (25)
We seek the growth rate o = o(k, 1, €) as an eigenvalue
for these equations.

1. Numerical solutions

The linearized problem given by Egs. (23)—(25) is on an
infinite domain and has variable coeflicients that change
rapidly in space when € <« 1. The above problem is sym-
metric about the origin and so we need only solve the
problem on the interval 0 < z < co. By testing a number
of numerical schemes for treating the far-field boundary
conditions, we determined that an accurate approach was
to truncate the domain at a sufficiently large distance,
rather than employing a coordinate transformation that
maps the infinite interval to a finite interval. At the far-
field boundary, the phase field is set to zero, and decay
conditions are given for the thermal field. This choice is
motivated by the expectation that the significant varia-
tion of the phase field is confined to an O(e) vicinity of
the interface, whereas outside of this region the asymp-
totic form of the perturbed thermal field is similar to
that for the sharp-interface problem. We have solved the
resulting problem using two approaches. The first is to
solve a boundary value problem using the FORTRAN sub-
routine SUPORT [16]; the growth rate o is treated as a
parameter that is varied in order to satisfy the boundary
conditions in the manner described by Keller [17]. In this
method, the far-field boundary condition for the pertur-
bation temperature in the melt is replaced by D4 = 1 and
then o is iterated until the correct boundary condition is
satisfied. The second approach is to use a pseudospectral
discretization in space, followed by a numerical solution
of the full matrix eigenvalue problem (see Appendix A).
This procedure determines many eigenmodes for the dis-
crete problem, and the eigenvalue with largest real part
gives the growth rate corresponding to the most danger-
ous mode. Note that this second approach is effective
in this problem because the symmetry about the origin
allows us to split the domain and turn the transition in
the phase field into a boundary layer. If the domain is
not split in this manner, the accuracy of the pseudospec-
tral approach is degraded due to the rapid changes in the
solution in the interior of the domain [18].

Some results of the numerical solution of the problem
for p = 1 and different values of ¢ are displayed in Fig. 2,
where the curve for € = 0 gives the corresponding sharp-
interface results. The value u = 1 is large enough that the
results correspond to the large-u regime and are insensi-
tive to further increases in u. The growth rates are all
nonpositive; the growth rates from the phase-field model,
however, lie below those of the sharp-interface model in
general. For a given wave number in the indicated range,
the magnitude of o increases with ¢, and the system be-
comes more stable. This effect is analogous to the effect
of increasing the value of y in the sharp-interface model
(cf. Fig. 1). Since p is proportional to v and g/, in this
sense increasing the interface thickness is analogous to
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o(k)

FIG. 2. Linear theory growth rates for the isothermal pla-
nar front are shown for different values of the nondimensional
thickness of the front e¢. Here p = 1.

either an effective increase in the surface tension, as sug-
gested by the results of Brattkus et al. [4], or to effectively
faster attachment kinetics, over this range of wave num-
ber. Note that the interface thickness is smaller than
the wavelength of the perturbation if ek < 27, which
is true for the indicated range of wave numbers. For a
given value of €, the deviation from the corresponding
sharp-interface results increases with wave number over
the indicated range. The results of the phase-field model
for a given value of € might be expected to deviate signif-
icantly when the wavelength becomes comparable to the
interface thickness; this will be discussed in more detail
in Section II B 3 below.

2. Asymptotic behavior for e K 1

It is possible to apply the method of matched asymp-
totic expansions to the linearized problem given by
Egs. (23)—(25) to compute the correction to the sharp-
interface growth rate that results from the phase-field
model in the limit where the thickness of the front van-
ishes for a given value of k. The result of the asymptotic
analysis is of the form

o(k,€) ~ ao(k)[1 + eay(k)], (26)

where

2 + 0o (k)/(12)3)
2/p+1/d0 — 00(k)/(2X3)’

Ao = Voo + k2, (28)

and oo (k) satisfies the sharp-interface dispersion relation
given in Eq. (8).

This asymptotic behavior of the growth rate is verified
in Fig. 3, where we compare the numerically-determined
values of o with the asymptotic results by plotting the
quantity

o1(k) = (27)

g~ 9 (29)

s = -
€000
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FIG. 3. Convergence of the asymptotic results for the
phase-field model to the sharp-interface stability results for
the isothermal planar front as the interface thickness tends to
zero, for various values of the wave number, k. The quantity
3(k) is defined by Eq. (29).

as a function of € for various wave numbers. As expected,
8 converges to unity as € tends to zero; the agreement is
best for smaller wave numbers, and the value of € required
to achieve a given accuracy decreases rapidly as the wave
number is increased.

The quantity eoj gives the size of the relative error
(0 — 09)/0o0 to leading order in €; the value of o} is
shown in Fig. 4. The dependence of o} on the wave
number varies considerably with u, and for large val-
ues of u the sign of the correction reverses for the wave
numbers k > 1.5. The correction to the growth rate
tends to different constants depending on the value of
u. This implies that for large k, there is a small con-
stant shift in the growth rate obtained from the sharp-
interface model. Though the result stays close to the
sharp-interface growth rate, the asymptotic representa-
tion of the solution breaks down because the solution to
the linearized phase-field equations changes to a different

.55 -
T ] 1
.45 i
.40
35
.30 4
25 4 N -———
.20
.15
.10
.05
.00 ~

.05 N

.10 ~~a
.15

oy’ (k)
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1
o 0O o

|
o

FIG. 4. The correction to the sharp-interface growth rate
o1, given by Eq. (27), is shown as a function of the wave
number k for several values of the nondimensional attachment
kinetics parameter pu.

behavior in the large k regime. We consider k£ >> 1 in the
next section.

Figure 4 shows that o] — 0 for k¥ < 1; larger values
of € are allowed to obtain a given accuracy. Expanding
Eq. (27) for small k shows that o} ~ 11k/6, so that
the relative error is small if ek is small, that is, if the
interface width is small compared to the perturbation
wavelength. This is confirmed directly from numerical
calculations, for example, for x = 1, k = 0.01, and € = 10,
the relative error is 18.2%, while the asymptotic result
predicts 18.3%.

3. Asymptotic behavior for k> 1

When the wavelength of the perturbation to the front
becomes of the order of the interface thickness or smaller,
we no longer expect the phase-field model to give much
physical information, but we wish to investigate how the
behavior of the solutions changes in this regime. We now
let € be fixed, and k = oo, and examine the solutions to
the linearized perturbation equations in this limit. We
pose the expansions for u bounded less than unity

0’=20k2+22+"-, (30)
& = Bo(2) + 15 82() + 1, (31)
U = Uo(z) + %Uz(z) +e (32)

Substitution into the linearized equations Egs. (23)—(25)
yields to leading order that

-
Up= —n
° 7 2(1+ %)

At next order, we find that

®p, and X9 = —pu. (33)

€2D*®) — Q(2)®o = 0, (34)
where
_ 1 72 620 6222
Q@) =50 =3C+ grrgy t a9

This is an eigenvalue problem for ¥,; the problem has
some analogy with the motion of a particle in a potential
well given by the first two terms of Q(z) and an energy
given by the last term in Q. A solution of the form

®, = sech? (iz—e—) , (36)
__#
¥y = 8l =p) (37)

may be found; further terms in the series may also be
constructed by continuing the procedure.

Numerical solution of Eq. (34) shows that this is the
first eigenfunction and eigenvalue; higher modes have
sign changes near the origin and do not exhibit decay
for large |z|. We believe these modes to be analogs to
the continuous spectrum of the sharp-interface model on
an infinite domain. In the limit ¢ — 0, the expansion for
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k > 1 breaks down. Compare the expansion in this limit
with the sharp-interface expansion for k > 1 and p < 1,
Eq. (15). It is now clear how the two limits ¢ — 0, k
fixed and k > 1, € fixed do not interchange.

A similar approach may be employed for p bounded
above unity. We make a change of variable z = kZ, so
that D? — D?/k? where D = d/d%; we pose the expan-
sions

O’=20k2+22+"', (38)
2= (@0(2) +®a() + ) . (39)
U:U0(2)+£—2—U2(2)+~~ . (40)

At the leading order, we find that ¥y = —1, and that
3e(p—1
Uy = _E(_’ﬁ__)_qm (41)
°

At O(1), we find that

- H .
22 - 6€(H — 1)7 (42)
a bit of algebra at O(k?) yields the equation
3e(u—1) ~, @ 1 —o, . €235
——D* 4+ — |=(1-3 ®
{ 7 262(p—1) p(1 =37+ 7 °

=0. (43)

Again we find that the first two terms for the growth
rate are determined by an outer problem; the leading or-
der eigenfunctions are determined as well. Solutions to
Eq. (43) were obtained numerically using a pseudospec-
tral discretization in space, and again solving the result-
ing matrix eigenvalue problem for the function values
at the collocation points. The solutions to the asymp-
totic problem again correspond to the first eigenvalue
and eigenfunction.

C. Discussion

A summary of the numerical and asymptotic results is
presented in Figs. 5 and 6. In these figures the numer-
ical results are compared to the asymptotic results; we
find that for smaller wave numbers, the asymptotics for
€ € 1, k = O(1) are a reasonable approximation to the
numerically computed results, while for larger values of
k, the asymptotic results in the limit £ > 1, e = O(1)
are a good approximation. The numerical results illus-
trate the transition between the types of behavior. The
“rolling off” of the diffuse-interface results for larger k
is an indication that the interface no longer resolves the
short-wavelength perturbations, and is now qualitatively
different than the sharp-interface model. Qualitatively
similar results are obtained when the phase-field model I
of Wang et al. [9] is analyzed in the same manner. We be-
lieve this departure to be generic for large-wave-number
perturbations in diffuse-interface models. We note that
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FIG. 5. A comparison of numerical and asymptotic results
for u = 0.05. The leading order behavior (—uk?) is subtracted
off in order to emphasize the differences in behavior. The solid
curve corresponding to € = 0 is the sharp-interface result. The
curves with triangles corresponding to finite € approach the
horizontal curves representing the k > 1 asymptotic results.
The curve € < 1 is the asymptotic result in the limit € — 0, k
fixed, evaluated at e = 0.1.

from Figs. 2-4, it is apparent that long waves are much
easier to resolve; this is true in the sense of being in the
asymptotic regime where sharp-interface asymptotics are
valid.

III. HYPERCOOLED CASE

If the melt is cooled by more than L/c below the melt-
ing point, the melt is said to be hypercooled and the solid
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FIG. 6. A comparison of numerical and asymptotic results
for p = 10. The leading order behavior (—k?) is subtracted off
in order to emphasize the differences in behavior. The solid
curve corresponding to € = 0 is the sharp-interface result. The
curves with triangles corresponding to finite € approach the
horizontal curves representing the k > 1 asymptotic results.
The curve € < 1 is the asymptotic result in the limit € — 0, k&
fixed, evaluated at € = 0.1. The numerical solution for e = 0.1
approaches a constant value that is not shown on the graph
for larger values of k.
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phase may grow at a constant speed [19]. Sharp-interface
models of solidification have constant-speed solutions for
undercoolings larger than L/c [19]. For these large un-
dercoolings, there is no time-dependent buildup of heat
ahead of the front as it propagates and the growth of
the solid phase is limited by attachment kinetics. This
situation is difficult to achieve experimentally for met-
als (for example, Refs. [20,21]), but it has been achieved
for the molecular material white phosphorus (P4) in a
directional apparatus [19]. Several theories of the lin-
ear and nonlinear stability of the planar sharp interface
have been developed [22-27]. Generally, the planar front
is unstable to long waves; however, when the undercool-
ing is sufficiently large, the planar front is restabilized
according to linear theory. For our purposes, the the-
ory is well understood in that the roles of the material
parameters are known and can provide for a good com-
parison between sharp-interface and phase-field model-
ing approaches. The phase-field model we will employ is
model I of Wang et al. [9].

Several investigations near supercooling of L/c have
been carried out for phase-field models. Collins and
Levine [28] computed plane front solutions for Langer’s
phase-field model. Schofield and Oxtoby [29] examined
essentjally the same model at exactly L/c undercool-
ing and found that constant velocity solutions only exist
for sufficiently low thermal diffusivities; Lowen and co-
workers [30,31] examined the same situation for a piece-
wise parabolic free energy (the “parabolic” model), and
found similar behavior. Léwen and Bechhoefer [31] com-
puted constant speed solutions for other supercoolings
near L/c analytically and found that constant speed so-
lutions could exist at smaller supercoolings than L/c. A
time-dependent computational approach was used to find
these constant speed solutions in [32]; Umantsev [33] has
computed the same type of solution for a different phase-
field model similar to that of model II in Wang et al.
[9]. The stability of these constant-speed solutions had
been examined only for planar perturbations by Umant-
sev [33]; our work will be more general in that we allow
corrugations to the planar front. Recently a stability cal-
culation has been carried out for a parabolic phase-field
model (7]; those results will be discussed with the results
of the present work.

A. Sharp-interface model

We begin by summarizing sharp-interface results in our
notation. A pure crystal grows into a hypercooled melt;
that is, the far-field temperature in the melt is given by
Teo < Tapr — L/c. We write the governing equations in a
frame moving with speed Vp in the positive-z direction;
we also replace the far-field boundary conditions with

Ty - Too, z = 00, and Ts = T + L/c, 2 = —o00.
(44)

We again nondimensionalize lengths with dy = TyT'c/L
and time with d2/k, but the temperature is now scaled
with Ty — To,. After nondimensionalization, the base

state (a function of z only) becomes
—Pz
A )
the constant pulling speed is given by the nondimensional
Péclet number as

Tor =-1+

1
= - —; 45
TOS 1+A’ ( )

P=ua-1), (46)
where

C(TM - Too)

PZVOdo/K, A= L

(47)
and p is defined as before.

The linear disturbance equations in the bulk are just
the diffusion equations with drift

%+P% =V3TL, 2> 0 (48)
%1;5 + Pa—g;i =V?Ts, 2 < 0; (49)
at z = 0 we have
1 0h _ 8Tor, 18%h

Tpa e Tt t T P Raa (50)

Ty, OTs , 8°TorL,\ _ Oh
(‘a?‘%?* 32 )= e (51)
T + ag;’“h =Ts. (52)

The perturbation temperatures must decay to zero far
from the interface.
The solutions are given by

Tr = T explot + ikz + ALz], (53)
Ts = Tz explot + ikz + Agz], (54)
and
h = H, exp[ot + ikz], (55)
where
P P 5 | P2 2
z\L——E—z\,/\s——E-f-z\,and/\— T+a+k.
(56)

Substitution into the interfacial conditions and eliminat-
ing the explicit o dependence results in the dispersion
relation

33 4 H32 k2 HP P 5 B2, HP?
3+ 2A +[(p e - - Sk +

=0. (57)

This equation is easily seen to reduce to the isothermal
case by setting P = 0. The modes corresponding to
the solution of this equation are the discrete part of the
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spectrum. Solutions to the bulk equations also exist with

7;.2
4

o= —k*—p% 0 < p< oo; (58)
these modes are the continuous spectrum. Again these
modes do not satisfy the decay boundary conditions, but
they can be important in interpreting numerical results
on a finite domain.

It is easy to solve this equation numerically for the
growth rate 0 = o(k). For P < 1, long waves are found
to be unstable, while short waves are stabilized by cap-
illarity. The restabilization of the planar front at high
speed, or absolute stability [22-27], is readily seen as the
nondimensional speed P increases. As P increases, the
band of unstable wave numbers shrinks and for P > 1,
there are no wave numbers with positive growth rate.
This result has been examined by a number of authors
[22-25,27]. A simple result sufficient for our purposes is
that for k¥ < 1 and P a bounded amount (with respect
to k) away from 0 and 1, we have

1-P,,
o~ k. (59)
Sharp interface results will be compared with phase-field
results in the next section. '

B. Phase-field model

A phase-field model of Wang et al. [9] (their model I)
may be nondimensionalized with the length scale dy, the
time scale d%/k, and the temperature relative to Ths in
units of the undercooling Ty — T ; shifting to a reference
frame moving with speed V; in the positive-z direction,
we obtain

o 7] ' 1 4,
a_f — Pa—f =M [ap (¢)'LL - mp (¢) + 62V2¢:| s (60)
du Ou 1 , ¢ _ @ _ 2
i £+KP(¢)<5£ Paz)_vu’ (61)
where
_d@M  a"L(Ty ~Tw) _ €'V
M= P a= TJ?/I 1 €= dg (62)
and
p(¢) = ¢>(10 — 15¢ + 6¢2). (63)

Here (€”)? is a gradient entropy coefficient and 1/a” is
related to the barrier height (see Ref. [9] for more detail).
We require that u = ~1, ¢ = 1 as z = oo and u =
us, ¢ = 0 as z — —oo; here us is a constant to be
determined.

As done previously, we may take the limit ¢ — 0 to re-
cover the sharp-interface model. After an analysis similar
to that done by Caginalp [2] (all details are omitted), the
appropriate scales are a = aeA, M = p/e, A = 0(1)

where @ = 1/(6+/2). We now choose the parameters in
the phase-field model to follow this scaling, regardless of
the size of ¢€; that is we fix u and A, while € varies.

The phase-field parameters may be related to the phys-
ical parameters of the sharp-interface models in the fol-
lowing way. We choose the physical interface thickness ¢
to be

§=¢"Va. (64)

Redimensionalizing results in the following expressions
for the phase-field parameters in terms of the sharp-
interface model parameters:

" ’)’5 " aTM ’ ;L'TI%,IQ 1 N
= ——— = -— = T <. 65
€ ‘/ Ty’ a ol and M A (65)

From these relations, it is clear that varying only € in
the nondimensional parameters is equivalent to varying
the physical interface thickness § while holding the other
physical parameters fixed.

1. The plane front

We may look for one-dimensional solutions to the hy-
percooled problem. We must solve the time-independent,
one-dimensional form of Egs. (60) and (61) subject to the
boundary conditions

¢ —0,u > usasz—> —oc0
and
¢—>1,u— —1asz— oo (66)

The solution must be calculated numerically in general.
It is convenient to integrate the thermal equation once
(from z to o) to obtain

us 4P [w%p(qﬁ)] =P(—i~ 1))

From this first integral, it is clear that as z — —o
the solid temperature becomes identical to the sharp-
interface model, i.e., us = —1+ 1/A [19], even when the
interface has a finite width.

For the purposes of numerical approximation, we trun-
cate the domain. We may minimize the error involved
by applying boundary conditions on the phase field that
enforce the same decay as would occur in the infinite
domain. This is accomplished by linearizing around the
phase field values of zero and unity to find the decay to
these states, and imposing boundary conditions to en-
force this decay. The result for the solid far from the
interface (z = —z;) is

¢: =210 =0; (68)
in the melt far from the interface (z = z;), we have
¢ —A(¢—1) =0, (69)

where
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P P\? 1

Ay = o + (2N) + R (70)
The different decay rates are a consequence of the asym-
metry in the hypercooled case. The above boundary
value problem involving the second-order equation for
the phase field, the first-order temperature equation, the
asymptotic boundary conditions on the ends of the do-
main |z| < zg, and the single temperature boundary con-
dition of u(—zz) = —1+1/A, is solved using the package
COLNEW [34]. We have also used the appropriate Dirich-
let conditions at the boundaries. We can easily converge
to results independent of the boundary conditions and
the domain length when € and A are not too large.

This boundary value problem is a nonlinear eigenvalue
problem for the heteroclinic orbit in phase space that
connects the fixed points (¢,¢,,u) = (0,0,—1 + 1/A)
and (¢, ¢.,u) = (1,0,—1); similar solutions to a differ-
ent phase-field model have been given by Umantsev [33]
in his Fig. 2. We seek the eigenvalue P = P(e, u, A).
In order to find the nondimensional speed P we fix the
value of the phase field at the origin as ¢(0) = 1/2 and
solve the boundary value problems arising for positive
and negative z separately. In general, the slope of the
phase field at the origin will not be continuous, and we
use the difference of the slopes as a residual for iterat-
ing on P. Both DNsQ [35] and DFZERO [36,37] have been
used for root finders in the iteration. A representative
solution is shown in Figs. 7 and 8; in these figures, the
characteristic length of the thermal field is larger than
the layer thickness in the phase field. For a fixed ¢, we
find that for smaller Péclet numbers the decay length of
the thermal field is much longer than the layer thickness
and for large Péclet numbers the two fields have the same
characteristic length. This behavior has been pointed out
by Umantsev [33].

Figures 9-11 display results for the propagation of the
plane front into the melt. The constant-speed solutions
indicated by the curves deviate from the sharp-interface
results as € increases. Constant-speed solutions are found
for undercoolings smaller than unity when the interface
attachment kinetics parameter u and nondimensional in-

1.0
0.9} H=1.0, A=1.25, P=0.303
0.8 £=0.25
0.7
__0.86
N
Y 0.5
0.4
0.3
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0.0
-4 -3 1 2 3 4

FIG. 7. Computed base states showing phase field #(z) as
a function of the spatial variable z.
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FIG. 8. Computed base states showing the temperature
field @(z) as a function of the spatial variable z. The
phase-field result is the solid curve; the dashed curve is the
sharp-interface result.

terface thickness € are large enough; we have chosen a
very large value of the kinetics parameter p = 10 in
Fig. 9 for ease of demonstration. Such solutions have
been found by previous workers [31-33]; we shall come
back to a comparison with their findings. For smaller
values of the kinetics parameter p the constant speed so-
lutions deviate much less from the sharp-interface results
for comparable interface thicknesses; Fig. 11 displays the
magnified deviations from the sharp-interface results for
p# = 0.05. No subunit-undercooling constant-speed solu-
tions exist.

Constant-speed solutions below unit undercooling do
occur, as shown in Fig. 9, when the quantity pe increases
through (approximately) unity; this was empirically de-
termined for 5 < p < 20. Specifically, numerical calcula-
tions show that

WL €a

pe=—— - =~ 1.5. (71)
c K
5.0
uw = 10.0 P
4.5 £=0.001 T
£=0.05 /_//'
4.0 €=0.10 o
£=0.25 .-
3.5 ]
3.0
& 2.5
2.0
1.5
1.0
0.5
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0.

FIG. 9. Computed base states for several values of the
nondimensional interface thickness € for 4 = 10.0; for this
high rate of attachment and sufficiently large €, the model we
use displays constant-speed growth for subunit undercoolings
as seen in other phase-field models (Refs. [29-33]).



4346 R.J. BRAUN, G. B. McFADDEN, AND S. R. CORIELL 49

0.025

u=0.05

™

0.020

|

|

|

{

i

~ ™
nnn

- 000
oU =0
\

0.015 g

™

0.010

0.000
1.00 1.10 1.20 1.30 1.40 1.50
A

FIG. 10. Computed base states for several values of the
nondimensional interface thickness € for p = 0.05.

The product pe thus gives a ratio of kinetic to ther-
mal speeds. When the thermal diffusion speed becomes
smaller than the kinetic speed, constant-speed solutions
for A < 1 may occur. This behavior is in qualitative
agreement with the results of previous work [29-32]. We
note, however, that our work differs from theirs in the
treatment of the nondimensional parameter a; in their
work, the equivalent parameter does not vary with e.

We also note that when the front propagates at con-
stant speed for an undercooling less than unity, the solid
formed is superheated [31,32]. Superheated solid was not
observed with the growth of white phosphorus (P4) into
its hypercooled melt [19]. For P4,we estimate pu = 0.066
based on [19,38] and references therein; thus our model
would not predict superheated solid. Lowen and co-
workers [31,32] have discussed the possibility of this be-
havior for solution growth.

FIG. 11. Deviation from the sharp-interface base states for
several values of the nondimensional interface thickness € for
p = 0.05. The speed of the front is reduced if the thickness
of the front and the undercooling are large. Here Ps is the
sharp-interface front speed given by Ps = p(A —1).

2. Linear theory

We perturb the transition layer as follows:

b= (Z(Z) + @(z)eik“”", and u = ﬁ(z) + U(z)eikzﬁ—at'
(72)

The linearized perturbation equations are

e(D? - k*)® — ‘?%Q + ale [p"(§)u® + p'(¢)U]

2

——% [c® — PD®] =0, (73)
(D* — k*)U — oU + PDU

5 P90 - P'($)3.2 ~ Pr(@)Da] =0, (14)
subject to ®,U — 0 as |z;| — oo; here D = d/d=.

Based on experience with the isothermal model, we
truncate the domain rather than map. The trunca-
tion of the domain is a little more complicated than for
the isothermal model; the approach here is to linearize
around the states ¢ = 0,1 and impose the boundary con-
ditions at +z; such that the appropriate decay is recov-
ered. These boundary conditions are, on z = z;,

&, - 2P® =0, and U, - AU = 0; (75)
on z = —z;, we have
&, -2AP% =0, and U, - AU = 0. (76)
Here
@) P P\ o ., 1
At =" \/(ﬂ> +—=+k + 50 (77)
and
. )
AP = —g + @) +o+ k2 (78)

Note that the boundary conditions for the temperatures
are only approximated for ¢ near zero and one, and so
the temperature need not be too close to its final value;
in effect, we are only integrating through the layer in ¢.
This is expected to help with the typically slower decay
of the thermal field.

3. Numerical solution schemes

We employ two methods of solving the problem nu-
merically. The first is a finite-difference approximation,
where the maximum eigenvalue of a matrix from the dis-
crete problem yields the growth rate of the perturbations.
The second is a shooting method, where the growth rate
is found as an eigenvalue in a boundary value problem;
the problem is solved using the routine SUPORT. The
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two approaches are complementary; the finite-difference
method can find the first few modes, and the results of
this approach may be used as good guesses for the more
accurate boundary-value-problem approach.

In the finite-difference approach, we use second-order
accurate central differences for first and second deriva-
tives at the interior points. For the boundary condi-
tions we use a forward or backward approximation. The
boundary conditions pose a problem because they con-
tain functions of the eigenvalue o when the decay condi-
tions are applied on the truncated domain. We can only
eliminate one of the radicals at a time via substitution;
we choose to retain the decay conditions on the thermal
field, because the decay is typically slower for that field in
the parameter range of interest. We then further approxi-
mate the linearized problem with the Dirichlet conditions
for the phase ® = 0 on z = +z. Using the approach
outlined in Ref. [39], we employ a scheme in which the
size of the discrete system is roughly doubled in order
to put the equations in standard generalized eigenvalue
form (see Appendix B for details). Solving the algebraic
generalized eigenvalue problem yields more than just the
first eigenvalue and eigenmode, and this may be of value
in discovering nearby modes; it may also yield good start-
ing values for our more accurate, second approach.

In the second approach, we use Keller’s method [17] as
a means of iterating with o in order to satisfy all of the
boundary conditions in the problem. In this approach,
we replace the decay condition in the melt with the con-
dition Du = 1, and then iterate with o until the decay
condition is satisfied. This method has the advantage of
high accuracy, but its convergence to the result is often
very sensitive to the initial guess. The decay boundary
conditions at each end of the domain present no difficulty
as well. For simplicity, we apply the Dirichlet conditions
® = 0 on the boundaries as in the finite-difference im-
plementation. It is possible to compute the solution to
a given error tolerance with either the decay or Dirichlet
conditions on ¢ in the base state, and so we believe this
to be a reasonable approximation.

4. Linear theory results

The growth rate of the perturbations to the planar
front propagating into a hypercooled melt are displayed
in Fig. 12. By decreasing €, the growth rates can be made
as close as one likes to the sharp-interface results, al-
though under extreme conditions accurate computations
can be rather difficult to carry out. Long waves are again
unstable and short waves are stable. The growth rates of
the long waves are increased as € increases. We find this
to be consistent with the interface attachment kinetics
being apparently more rapid. The growth rates for the
two models cross at some wave number for o < 0, and
the phase-field growth rates are lower (more negative)
thereafter for larger k. We find this consistent with an
apparently higher surface energy for the phase-field mod-
els. This is born out by the comparison of the absolute
stability limit shown in Fig. 13; the absolute stability
limit occurs at lower undercoolings and higher speeds
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FIG. 12. Growth rates o as function of wave number k for
sharp-interface and phase-field models. The curve for € = 0 is
the sharp-interface result; the curves for € = 0 and € = 0.025
are practically indistinguishable.

than for the sharp-interface model as the thickness of
the interface increases. One instance of distinguishing
the different restabilizations of the interface is illustrated
in Fig. 14; this determination is approximate because
the numerical error becomes more important in finding
accurate solutions for very small wave numbers.

We may compute the marginally stable wave number
ko > 0 for which o = 0; the results for two different
approaches are shown in Table I. This case was chosen
based on choosing a representative growth speed of 2000
cm/s for a nickel dendrite [41] with x = 0.05. The sharp-
interface result is listed in the first line; in the second line
we match the undercooling and in the third we match
the speed. It is apparent that most of the modification
of the marginal wave number, and most likely in the rest
of the linear theory, is due to the modification of the
base state. It is possible to use ko in marginal stability
theory for the tip of a growing dendrite [40] (when the
speeds are matched); based on the small error observed
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FIG. 13. Stable and unstable regimes in sharp-interface
(¢ = 0) and phase-field models (¢ # 0). The dashed (solid)
curves denote unstable (stable) planar fronts. The curves for
€ = 0 and € = 0.01 are nearly indistinguishable.
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FIG. 14. Growth rates o as a function of wave number
k near absolute stability. Increasing the undercooling to
A = 1.995 stabilized the planar front in the phase-field model;
the undercooling must be larger than A = 2.0 to stabilize the
planar front in the sharp-interface model.

in the calculations, one would expect the difference in the
predictions for the sharp- and diffuse-interface theories to
be very similar. Note that the comparison that is made
for the purposes of marginal stability theory is for fixed
speed P; alternatively, one can also compare the results
with the bulk undercooling fixed. We note that in either
case further increase in € over the values shown in Table I
results in a complex growth rate.

In Fig. 15, we illustrate linear stability results for u =
10, € = 0.25; for these parameter values, constant-speed
solutions exist for undercoolings less than unity. The
growth rates for the first two modes are shown above,
below, and at the limit point; similar behavior is seen for
other parameter values. We find that the part of the base
state that has negative slope in the (A, P) plane is indeed
unstable; the modes may be real or complex depending
on the parameters.

It is interesting to note the double zero in the growth
rate at the limit point as illustrated in Fig. 15, at the
point labeled b. We note that the eigenfunctions for the
two modes are rather similar for the parameters we have
studied. The growth rate as a function of P for fixed k =
0.1, p = 10, € = 0.25 is shown in Fig. 16; the longer the
wavelength of the perturbation, the larger the value of P
required before that mode restabilizes. All wave numbers
are stable above the limit point, save & = 0 which is
neutrally stable. Note that in Fig. 15, at the point a in
the (P, A) plane, there is a possible Hopf bifurcation for

TABLE 1. Marginally stable wave number ko for
sharp-interface results (¢ = 0) compared two ways with
phase-field results. In the second line, the bulk undercool-
ing is held fixed. In the third line, the speed of the planar
front is held fixed.

€ 1’ Z\ ko
1.5 x 10~3 1.03 0.0270033
1.0 1.5559 x 1073 1.03 0.0275115
4.0 1.5 x1073 1.02535 0.0272539
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FIG. 15. The stability results for p = 10 and € = 0.25 for
the three indicated conditions; the curve on the left repre-
sents the planar front. Each inset figure is the corresponding
plot of the growth rate o vs wave number k for those condi-
tions; the range of the horizontal axes is 0 < k < 0.11 in each
case. The real (imaginary) part of the growth rate, o, (0i),
is given by the solid (dashed) curve. The conditions for the
three insets are (a) P = 1.001, A = 0.955, |o,,0:] < 0.2;
(b) P = 1386, A = 0.952, |or,0:] < 0.1; and (c)
P = 1.686, A = 0.954, |0y, 04| < 0.07.

a fixed k =~ 0.063; if such a bifurcation occurs, there is a
good possibility that it is of Takens-Bogdanov type [42].
The nonlinear analysis of the equations to substantiate
this possibility are beyond the scope of this paper.

C. Discussion

The phase-field model we use has plane front solutions
similar in some respects to other phase-field models. In
particular, the convergence of the phase-field model to
the sharp-interface model for vanishingly thin interfaces,
and the existence of constant-speed solutions below unit

-0.10
-0.15
0.0 0.6 1.2 1.8

FIG. 16. The growth rates o of the first two modes are
plotted against the nondimensional growth speed P for fixed
k = 0.1. The real part o, is the solid curve and the dashed
curves are the imaginary parts o;.



49 MORPHOLOGICAL INSTABILITY IN PHASE-FIELD MODELS. .. 4349

undercooling are two of the similarities. Lowen and Bech-
hoefer [31] gave a physical argument suggesting that the
states where P increases with decreasing A are unstable.
Such states were found to be unstable to planar pertur-
bations by Umantsev [33] in a different model; the upper
branch where the speed increases with increasing under-
cooling was found to be stable against planar perturba-
tions. We have computed the stability of the plane front
against sinusoidal perturbations; on the upper branch, we
find neutral stability for a planar perturbation. Because
of the large value of y required to access constant-speed
solutions below unit undercooling, any states that appear
linearly stable in the regime A < 1 seem unlikely to oc-
cur physically for a thermal problem, as discussed in Ref.
[31], and such states have not been observed in P4 [19].
Umantsev has given this growth of the superheated solid
at constant speed the name “heat trapping” [33], making
an analogy with solute trapping in the rapid directional
solidification of an alloy (see, for example, Ref. [43]).

The observed differences between the phase-field and
sharp-interface models may be explained by analogy with
sharp-interface results with an increased surface energy
v and an increased attachment kinetics parameter ',
provided that the diffuse-interface thickness in the phase-
field model is smaller than about 10% of the capillary
length do. This is based on a number of facts. Planar
fronts calculated from Model I of Wang et al. [9] traveled
faster than their sharp-interface counterparts for € < 0.1,
approximately. For thicker interfaces, fronts slower than
those of the sharp-interface model for the same u and
A can occur (see Figs. 10 and 11). For the hypercooled
case, the growth rates o of the unstable modes of the
phase-field model with small wave number are increased
over the corresponding sharp-interface wave numbers (see
Fig. 12); based on the asymptotic form of the growth
rate for the sharp-interface model Eq. (59), this seems
reasonable.

For large enough wave numbers the phase-field growth
rates are lower (more stable) than the sharp-interface
results, and so in this capillarity-dominated regime, it
appears that the thick interface has a higher apparent
surface energy. This conclusion is in agreement with re-
cent results obtained by Brattkus et al. [4]. They studied
the effect of thickening the interface on the critical nu-
cleation radius of a seed in an undercooled melt; their
static calculation provided a good comparison for appar-
ent surface energy. They found that the sharp-interface
model required a higher surface energy to have the same
nucleation radius as a seed in the phase-field model; the
phase-field model thus had a higher apparent surface en-
ergy in two dimensions. We note that in Ref. [4], it was
found that for a small regime in the three-dimensional
case there was an apparent reduction in the surface en-
ergy; given the isotropic nature of our work, no such
trend is found in the linear problems we have studied.
The linear theory of our work also shows that absolute
stability also occurs (though modified) for the planar in-
terface in the phase-field model; absolute stability was
also observed in the parabolic model studied in Ref. [7].

The constant-speed solutions of Kupferman et al. [7],
for a model with a piecewise-parabolic potential, grow

faster than a linear relationship with undercooling, yet
all emanate from unit undercooling with positive slope,
like the sharp-interface model (their Fig. 6). Apparently,
in their parabolic model, the interface attachment kinet-
ics become faster relative to sharp interface behavior with
increasing undercooling according to planar state results.
Their computed growth rates also show that short waves
are more stable in their phase-field model than in the
sharp-interface model for the range of data they present
(their Fig. 7), Thus the surface energy is apparently in-
creased for their model as well. The linear theory results
for small wave numbers show a stabilization of the long
waves; this suggests that the attachment kinetics are ap-
parently slower according to their linear theory. We see
either stabilization or destabilization of long waves.

Interpretation of the apparent increase in the surface
energy of the diffuse interface seems straightforward. The
interface is harder to corrugate when it takes on some
thickness; level curves of ¢ must be distorted and this
takes some of the free energy of the system. In the limit
of vanishing thickness of the interface this distortion van-
ishes. The behavior of the apparent attachment kinetics
is more complicated; there does not seem to be any sin-
gle trend as the interface thickness increases in the base
state.

IV. CONCLUSION

We have computed plane-front, constant-speed solu-
tions to sharp and diffuse interface models for solidifi-
cation of a hypercooled melt. We have undertaken an
investigation of what happens quantitatively to morpho-
logical instability results when the crystal-melt interface
thickness is allowed to be nonzero.

The stability of an isothermal plane front against sinu-
soidal perturbations was considered in order to contrast
some of the behavior of phase-field and sharp-interface
models. We investigate the limits ¢ < 1, k fixed and
k > 1, € fixed, and showed how the two regimes com-
pared with numerical solutions to the problem. We found
an apparent increase in the product of the surface energy
and attachment kinetics coefficients. The large k behav-
ior of the diffuse-interface model deviated qualitatively
from the sharp-interface model. When k is not large,
the interface thickness need only be small compared to
the perturbation wavelength to obtain a small error in
the perturbation growth rate relative to sharp-interface
theory.

The base state and linear stability results for growth
of a crystal into its hypercooled melt indicated that as
long as the interface was not too diffuse, then the attach-
ment kinetics were apparently enhanced and the surface
energy of the interface apparently increased by the use of
phase-field models. For thicker fronts, the kinetics may
be faster or slower. Based on our calculations, it ap-
pears that one must require the thickness of the front
to be comparable to or smaller than the capillary length
do in order to get good agreement with sharp-interface
theories in both the base state and the linear stability
results. For small p, an interface thickness comparable
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to the capillary length appears to give acceptable results;
for a large p, an interface thickness significantly smaller
than the capillary length is required in order to mimic
sharp-interface results.

The two problems considered here have different con-
clusions regarding how small the interface thickness &
must be in comparison to the other length scales in or-
der to asymptotically approach linear stability results
from sharp-interface models. Consider disturbance wave-
lengths A that are much larger than the capillary length
do; in the isothermal problem the interface width must
be small compared to the wavelength, whereas for some
cases in the hypercooled problem the width must be re-
stricted to the order of the capillary length. While this
behavior is not fully understood, we note that there are
several significant differences between the two problems.
The thermal length scale x/V is an additional parame-
ter in the hypercooled problem that is absent from the
isothermal problem. The dependence of the base states
on the interface width is significantly different for the two
problems; consider the linear stability equations for per-
turbations of wavelength A, for which the base state pro-
files enter as coefficients. For a disturbance wavelength
that is large compared to the capillary length, the base
state for the isothermal problem is sufficiently thin for
€ — 0 asymptotics to hold provided that § <« A, regard-
less of the value of dg. This is in contrast with the hyper-
cooled case, where we find that if the interface thickness
is larger than the capillary length, the base state can
be qualitatively different from the sharp-interface profile
(for example, the existence of constant-speed solutions
for less-than-unit undercooling). In fact, the numerical
results suggest that the base state may cease to exist
for large enough values of the interface thickness. Thus
for the hypercooled problem, solutions for the case that
do € § < X may not exist. This more complicated
behavior in the base state for the hypercooled problem
appears to be responsible for requiring the thinner inter-
faces in comparison to the isothermal case.
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APPENDIX A: PSEUDOSPECTRAL
DISCRETIZATION

We discretize the derivatives in the z direction us-
ing the standard Chebyshev pseudospectral method (see,
e.g., Refs. [44,45]). It is convenient for this method to
rescale z as

€+ 1)z (A1)

z =

N | =

in order to map the domain on the half interval 0 < z < z
to —1 < & < 1. We then have d/dz = (2/z)d/d{. We
take advantage of the symmetry of the linearized equa-
tions to solve the problem over the half interval so that
the region of rapid change in the coefficients occurs at
the boundary of the interval; this alleviates the Gibbs
phenomenon which occurs if the rapid transition occurs
in the interior of the domain [18]. At z = 0 we have
dp/dz = du/dz = 0, and at z = z; we have ¢ =u = 0.

We use the points &; = cos jn/n for j =0,1,...,n, so
that the “interface” is located at &, = —1. At the col-
location points we use the Chebyshev derivative matrix
D;; [45], which has the property that at the collocation
points &; the derivative g} of an nth degree polynomial
g(&) is given exactly in terms of its collocation values g
by the expression

9= Djrgx- (A2)
k=0

Higher derivatives are represented by powers Di(jm) of the
matrix D;;. We write gg = Djrgir and thereby let the
sum over the repeated index k be implied.

At the interior points in the melt &;, 7 =1,...,n—1,
we have the discrete equations

g
(DY — k*8i;)p; — 27 %%

1
+§(1 - 3¢gi)6ij¢j + aé,-juj =0, (A3)

1 ,
(Dz(Jz) — kzéij)u]' - U(sij (u]- + 5(}5]) =0, (A4)

where ¢ and j range from 1 to n. The boundary condi-
tions become D, ;j¢; = Dpju; = 0; note that ¢pg = ug =
0. The discrete equations then have the form

Ax = 0Bx, (A5)

which is an algebraic generalized eigenvalue problem.

APPENDIX B: FINITE-DIFFERENCE
DISCRETIZATION

We use central differences for the second-order spatial
derivatives and for the first-order derivatives we use a
central difference with twice the step size to discretize
Egs. (73), (74), and thermal conditions in (75) and (76).
For the boundary conditions we use a forward or back-
ward approximation with a single grid step. The bound-
ary conditions pose a problem because they contain func-
tions of the eigenvalue o when the decay conditions are
applied on the truncated domain. We define

st =+/P%/4+ 0+ k2, (B1)

which allows us to rewrite the problem as
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E(D? - k?)® — %Q + ale [p"(4)ad + p'(¢)U]

—55 [(s% — P?/4 - k*)® — PD®] =0, (B2)

DU~ (5~P?/9)U+PDU~ [§(3)(sh — P*/4 ~ K)®

~Pp"(4)$.® — Pp'(4)D®] = 0, (B3)
subject to ® =0 at 2 = 2, and

Uz—(—P2/4—ST)U=0,Z=Zl, (B4)
U, — (—Pz/‘l + ST)U =0, z=—z. (B5)
The grid is given by z; = —z; + (j — 1)Az so that
2y = —z and 2, = 2z, and ®; = ®(2;). The discrete
equations become
1 P Un—
Up+Up | -+ — —— =0,
stUn + ( (Az)+2)+(Az) (B6)
1 P U,
s7U, + Uy (ZE - 5) - @ =0, (B7)

~

€ (52— P2a— ke, — plitt — Bzt
ﬂ[(sT P24 = )2, - P

2 "z
__ ¢ %. 0. 224 o P (%) s
(AZ)2 (¢]+1 + q)]—-l 2¢]) + €“k Q] + '—_‘120 QJ

—ale [p"(¢;)8;%; + p'(8;)U;], (BS)

(s7 — P*/4)U; - Uj+1 + Uj—1 — 2U;)

1
()2 ¢

Upsr—Uizy 1] ,,-
—P—J%ITA—;‘)L}‘ N [P (8)(s7 — P?/4 ~ k*)®;
- P, — B
—Pp" (6;)$:;®; —’Pp'(¢j)L21(E)Ll] =0. (B9)

Here we have ®,,...,9,_; and Uy,...,U, for a total of
2n — 2 unknowns. We can define the vector

X =(®2,.,®n_1,U1,...,Ux)T, (B10)

where the superscript T' denotes the transpose, and then
the above equations may be written as

(s%P +srQ +R) X =0, (B11)

where P, Q, R are matrices which are determined from
Egs. (B6)-(B9). The first two rows of P are zero, and
the remaining submatrix we call P.InQ, Q(1,2n-2) =
Q(2,n — 1) =1 and all the remaining elements are zero.
Note that R is not tridiagonal.

As discussed in Ref. [39], we can rewrite the singu-
lar quadratic problem for st with the change of variable
Y = (XT,s7(PX)T)T to put the equation in standard
generalized eigenvalue problem form

AY = srBY, (B12)
where A and B are given by

QS
B=|% , B13
( P 02,4 (B13)

—R  Ozp_2
= B14
A (Ozn—4 Ipn-a ) ’ (B14)
§= ( O2x2n—4 ) . (B15)
Ion—4

This system may then be solved for its eigenvalues (s7)
and eigenvectors, and the largest eigenvalue and corre-
sponding eigenvector are typically of interest. The ad-
vantage here is that the new system is easily solved with
standard packages, while the price to be paid is that the
system size is nearly doubled.
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